
What do we already know?In the previous lab we established what functional programming entails and
learned to define simple functions in Python.

Objective:This week we'll delve into the topic of functions and argue why Python
supports the functional programming paradigm.

Python treats functions like any value (int, float, ...) you've encountered so far. You can for
example assign a function to a variable:

def sum(a, b):
return a + b

sum_numbers = sum
print(sum_numbers(2, 3))

If we want to see the type of the variable defined above we can write:

a = -3
print(type(a))
print(type(sum_numbers)) # the function from the previous example

Notice the type of the number_sum variable.

Python and functional programming

To facilitate writing programs according to the functional programming paradigm, a
programming language should provide the following two mechanisms:

• can receive a function as a parameter
• be able to return a function (to the entity that called it)

Since we saw above how Python treats functions, the above two requirements are
successfully provided by Python.

Functions as a parameter

A function can in turn be passed as a parameter to another function. For example, we can define our
multiply_5 function, which takes a function and a number as parameters. We also define a function

Translated from Romanian to English - www.onlinedoctranslator.com

https://www.onlinedoctranslator.com/en/?utm_source=onlinedoctranslator&utm_medium=pdf&utm_campaign=attribution

simple function called increment_1, which takes a parameter and returns it incremented by 1. Now we can call the
function multiply_5 with the parameters increment and a number, for example 5.

def increment_1(x):
return x + 1

print(increment_1(5))

def multiply_5(f, x):
return f(x) * 5

print(multiply_5(increment_1, 5))
Note: function multiply_5 can be called with any parameter for f, and x. However, if we called it
with two integer values, we would have a runtime error. That's why it's important to know what
parameters the function we're calling expects.

Anonymous functions

The notationlambdaargument:phrasedefines in Python an anonymous function (lambda function).
This is aphraseof type function and can therefore be used in other expressions. We can evaluate
directly without having to give the function a name first. This simple example illustrates that in
Python, a function (herelambda x : x + 3) can be used as simply as any other value.

> > > (lambda x : x + 3)(2) 5

> > > (lambda x, y, z: x + y + z)(1, 2, 3) 6

Returning to the notationdef, it is equivalent to define:

> > >
. . .

def f(x):
return x + 3

or

> > >
. . .

def f(x):
return (lambda x : x + 3)(x)

This way of defining a function doesn't make much sense, because inside the function f we define
an anonymous function that we call as soon as we define it. Conversely, anonymous functions can
be useful if we want to return a function. For example, we can define a function that returns an
increment function by 1 if the received parameter is True or a decrement function by 1 if the
received parameter is False. In this case the anonymous functions are

useful.

def return_function_incrementare(x): if x:

return lambda x: x + 1 else:

return lambda x: x - 1

Inc.
December

=
=

return_increment_function(True)
return_increment_function(False)

print(inc(5))
print(dec(5))

It can be seen that the result of calling the function return_function_incrementare is saved in the variablesInc.,
respectivelyDecember. These two variables are themselves functions, so they can be called.

As we saw in the previous subsection, functions can also be passed as a parameter. Instead of a previously
defined function, we can pass an anonymous function as a parameter. Thus, the example with multiply_5
becomes:
def multiply_5(f, x):

return f(x) * 5
print(multiply_5((lambda x: x + 1), 5))

Composition of functions

One of the simplest and most widely used operations with functions isUPthem, in this way we can easily
obtain complex functions (processing) starting from simple functions. In mathematics, iff: A
→ Bandg : C → A, the compositionf°g : C → Bit is defined by the relationship(f°g)(x) = f(g(x)).So,
starting from a valuex∈Ca value is obtainedg(x)∈A, and then by applying itfthe valuef(g(x))∈B
.

in Python we can define a composition function with two parameters, which returns another function, representing
the function f composed with the function g.

def comp(f,g):
return lambda x : f(g(x))

def f1(x):
return x * 2
f2(x):
return x + 1

def

f = comp(f1, f2)
print(f(6))
f = comp(f2, f1)

print(f(6))

Calling the comp function with parameters f1 and f2, which are themselves functions, gives us another
function. Of course, the order in which we give the parameters matters, so the result of the first composition
is a different function than the result of the second composition. This can also be seen by the fact that the
results of calling place with the same parameter.

Repeated application (composing a function with itself)

In particular, if a function has the same scope of definition and values, it can be composed with
itself:f°f, wheref : A → A.Starting from the composing functioncompwe can define a higher-order
function that composes a function (given as a parameter) with itself.

def appl2(f):
return comp(f, f)

f = appl2(f1)
print(f(6))
In the same way, we can compose the functionappl2with itself, yielding a function that applies 4 times the function
received as a parameter:

appl4 = comp(appl2, appl2)

f = appl4(f1)
print(f(6))
However, we can also define another function:

def appl4(f):
return appl2(appl2(f))

f = appl4(f1)
print(f(6))
In this case, the firstappl2produces the application of the function given as a parameter twice, that's allappl2.
Trying with multiple functions and integer arguments, we get equal values, suggesting that in the two
variants we have in fact defined the same function.

Operators are functions

To have access to the operators, we must import the moduleoperator. Then we can use an
operator as follows:

import
> > >

operator
operator.add(2,3)
5

> > > 2 + 3
5

For more details consult .

We can define a generic operations function, which takes as parameters a function representing the
operation we want it to perform and two numeric values. The function is defined and called as follows:

def generic_operation(op, x, y):
return op(x, y)

print(generic_operation(operator.add, 3, 4))

Functions with default parameters

Python allows us to declare functions with parameters that have a default value. Such functions can also
be called normally, but also without giving a value to the default parameter. In this case, the parameter
will be equal to the default value. Below you can see an example of a function that has a default
parameter.

def increment(x = 0):
return x + 1

print(increment(4))
print(increment())
If we have a function with several parameters, some of which are defaults, it is important that the
default parameters are at the end of the parameter list. For example, we cannot have a function
with the first parameter implicit and the second explicit. An example with more parameters can be
seen below. It is advisable to run it to understand how explicit parameters work in multi-
parameter functions.

def print_params(a, x = "a", y = "b", z = "c"):
print(a, x, y, z)

print_params("aaa")
print_params("aaa",
print_params("aaa",
print_params("aaa", y = "x")
print_params("1", "2", "3", "4")

"x")
"y")

This code prints the following lines:

aaa abc
aaa xbc
aaa ybc
aaaaa
1 2 3 4

 the link(https://www.geeksforgeeks.org/operator-functions-in-python-set-1/)

Type your text

https://www.geeksforgeeks.org/operator-functions-in-python-set-1/

